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An analytical expression is derived for the short-range order (SRO) magnetic

neutron diffuse scattering intensity in quasicrystals, and it is applied to a

fictitious model of spin-orientation disorder in the Penrose pattern. The SRO

diffuse scattering intensity depends on the overlapped volume of the occupation

domains which are separated from each other by distances less than the

correlation length and the SRO correlation functions. Analytical results for four

different spin arrangements in the Penrose pattern are compared with numerical

ones. The corresponding analytical and numerical results for all the cases are

quite similar, suggesting the validity of the analytical expression.

1. Introduction

X-ray and neutron scattering experiments provide important

information on the ordered and disordered states of solids. In

particular, the latter are powerful for determining magnetic

structures of crystals and quasicrystals. The scattered intensity

is classified into Bragg reflection and diffuse scattering

intensities. The former has information on the average

ordered structure, while the latter gives information on the

correlation between atoms in the disordered state. An

expression for X-ray Bragg reflection intensities of quasi-

crystals has been derived on the basis of an n-dimensional (n =

5, 6) description of the structure of quasicrystals (Yamamoto,

1996) and its extension to nuclear neutron diffraction is

straightforward. An n-dimensional description is also avail-

able to calculate short-range order (SRO) diffuse X-ray or

neutron scattering intensity. In a previous paper (Yamamoto,

2010) the author has given an analytical formula for the X-ray

SRO diffuse scattering intensity and applied it to the diffuse

scattering of phason flips of the Penrose pattern (PP). The

formula has been validated by comparing the analytical and

numerical results. Its extension to neutron nuclear scattering is

straightforward, since it is obtained from the formula for

X-ray scattering by replacing the atomic scattering factors

with the neutron scattering lengths. For magnetic neutron

scattering, however, different expressions have to be used.

Quasicrystals are ordered solids without periodicity and

show non-crystallographic point symmetries. Many quasi-

crystals contain rare-earth or transition-metal atoms with

magnetic moments (Tsai, 1999; Tsai et al., 1994; Luo et al.,

1993; Niikura et al., 1994). Therefore, whether or not the

magnetic properties of quasicrystals are different from those

of periodic crystals is an interesting subject in solid-state

physics. Quasicrystals usually have some structural disorder.

Their average structures can be determined by the

n-dimensional description, in which a quasicrystal structure is

given by a three-dimensional intersection of an n-dimensional

(n = 5 or 6) periodic structure (Yamamoto, 1996).

So far, magnetic structures with long-range order have not

been observed in quasicrystals (Sato et al., 1998). Therefore,

we can observe neither magnetic Bragg reflections nor

magnetic diffuse scattering caused by random phason or

phonon disorder, since such diffuse scattering intensities are

proportional to the Bragg reflection intensity (Jarić & Nelson,

1988; Lei et al., 1999; Ishii, 2000). However, magnetic SRO

diffuse scattering has been observed in an icosahedral Zn–

Mg–Ho (i-Zn–Mg–Ho) quasicrystal and it shows icosahedral

symmetry (Sato et al., 2000). This gives information on the

correlation between magnetic moments of different atoms so

it is important for understanding magnetic properties in

quasicrystals. No theory for analyzing such a SRO diffuse

scattering has, however, yet been proposed.

Sato et al. (2000) have performed single-crystal neutron

scattering experiments and observed a complicated magnetic

diffuse scattering intensity distribution from Ho electron spins

in i-Zn–Mg–Ho quasicrystals below the spin-glass transition

temperature. The intensity distribution has been analyzed

based on a six-dimensional model and the model could

reproduce the observed patterns well. The analysis assumes a

magnetic modulation with a single wavevector with an �11 Å

period, which is parallel to a twofold axis of an icosahedral

lattice. In addition, the correlation length of this magnetic

modulated structure is determined to be �10 Å. Such a

modulation breaks icosahedral symmetry. Therefore, at least

15 magnetic domains with different orientations should exist

to recover the average icosahedral symmetry, provided that

the magnetic domain has the point symmetry 2m0m0. Noting

that the correlation length is nearly equal to the wavelength of

the modulation wave, it is a highly dampened wave.

The existence of such a wavy magnetic modulated struc-

tures is, however, not a necessary condition for icosahedral

diffuse scattering. It is conceivable that a magnetic cluster



leads to a diffuse scattering intensity distribution with icosa-

hedral symmetry. In this case, if an atom has a magnetic

moment directed along some direction, many other atoms

related to it by symmetry operations should exist, since the site

symmetry compatible with the magnetic moment is low.

In this paper, an analytical formula for magnetic SRO

diffuse scattering intensity is derived and the derived formula

is applied to the magnetic moment arrangement in the PP, in

which the magnetic moments are located at the phason flip

sites in the PP (Yamamoto, 2010). This simple model can

simulate the magnetic disorder caused by a phason flip,

although such a magnetic spin arrangement is not realistic.

When magnetic atoms form a cluster and within the cluster the

correlation is complete, we can simplify the intensity formula

and easily include medium-range order correlations in the

calculation. Since most quasicrystals are considered to consist

of some kind of cluster, this treatment may be efficient for the

analysis of magnetic diffuse scattering in many quasicrystals.

In the next section, a general formula for SRO diffuse

scattering intensity is derived. In x3 a simplified formula is

given for the case where the magnetic structure consists of

similar magnetic (spin) clusters. Its simplest case without inter-

cluster correlation is discussed in x4. As an example of this

case, it is finally applied to four different spin arrangements at

the phason flip sites of the PP and the analytical and the

corresponding numerical results are compared.

2. Scattering intensity

The scattering cross sections of non-spin-flip ("") and spin-flip

("#) scattering are related to the pair-correlation functions,

hM�ðxeÞM�ðxe0Þi, of the magnetic moment densities at the

points xe and xe0, where �; � ¼ x; y; z and the superscript e

indicates vectors in external space. They are (Sato et al., 2000)

d�
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dxe0 exp½2�iq � ðxe � xe0Þ�

� hM�ðxeÞM�ðxe0Þi; ð3Þ

where h� � �i denotes the statistical average, V is the volume of

a crystal, and �, r0 and g are the gyromagnetic ratio of a

neutron, the classical electron radius and the Landé g factor,

respectively. The normalized scattering vector, q=jqj, is

denoted by eq, while es represents the up-spin direction of a

neutron. The total cross section for the unpolarized neutron is

given by the sum of (1) and (2),

d�

d�
¼ �

X
��

½��;� � ðe
�
qe�qÞ�I

��
ðqÞ; ð4Þ

where I��ðqÞ � hM�ðqÞM�ð�qÞi. This formula includes the

magnetic Bragg reflection intensity in general. Thus, if we

know the Fourier transformation of the magnetic spin-density

correlation functions, we can calculate the magnetic scattering

intensity. The correlation function I��ðqÞ can be split into

two parts: I
��
0 ðqÞ � hM�ðqÞihM�ð�qÞi and I

��
1 ðqÞ �

h�M�ðqÞ�M�ð�qÞi, where �M�ðqÞ ¼ M�ðqÞ � hM�ðqÞi. The

first and second parts contribute to the Bragg and diffuse

scattering intensities, respectively.

The calculation of the Fourier integral for the magnetic

moment density [see (3)] is, however, not straightforward,

since a quasicrystal structure is neither periodic nor random.

According to the calculation based on the higher-dimensional

description of quasicrystals (Yamamoto, 1996), the SRO

diffuse scattering intensity can be expressed by the overlapped

occupation domains (ODs) for the pair of atoms (see

Appendix A)

I
��
1 ðqÞ ¼ 	

P
ijl

ff �h���i0��
�
jl ivijl expð2�iq ��xe

ijlÞ; ð5Þ

where 	 ¼ V=�n, V is the volume of the crystal and �n is the

unit-cell volume of the n-dimensional lattice; f � f ðqÞ is the

magnetic form factor; ��il is the � component of the unit spin

vector for the magnetic atom which is located at the site

generated by the ith OD in the lth unit cell in n-dimensional

space, and ���il is the deviation from its average value:

��il � h�
�
i i. vijl � vijð�xi

ijlÞ is the overlapped volume (area) of

ODs located at xi in the unit cell at the origin and xj in the unit

cell at lattice vector xl: �xijl � xi0 � xjl. The latter symbol,

vijð�xi
ijlÞ, is used only when the vector �xi

ijl has to be specified

explicitly. (Superscripts e and i denote the external and

internal space components of an n-dimensional vector.) vijl

determines the frequency of pairs of magnetic atoms with a

distance of �xe
ijl � xe

i0 � xe
jl in external space. A higher-

dimensional model (n-dimensional model) of a magnetic

structure of quasicrystals is determined by the locations and

shapes of ODs for magnetic atoms (see Yamamoto, 2010).

Therefore, if we assume that the relevant correlation function

is h���i0��
�
jl i, the diffuse scattering intensity can be calculated

based on a higher-dimensional model.

To analyze magnetic SRO diffuse scattering in quasicrystals,

we need to give the correlation functions h���i0��
�
jl i in (5). In

general, spin orientations of atoms are not collinear so the

number of possible orientations may be larger than two. We

denote a different spin orientation by 
, which runs from 1 to

m. Like the case of atomic short-range order (Yamamoto,

2010), we introduce a statistical variable z
il , where z
il takes

values 1 or 0 when the spin of the ith site at xil is or is not in the


th orientation. Let the elements of the transformation matrix

of the local Cartesian coordinates to the common coordinates

be ðS
i Þ
��. The unit spin orientation vector is then represented

by ðS
Þ�zz
il . The correlation function h��
�i0 ����jl i can be

written as ðS
Þ�z
ðS�Þ

�z
h�z
i0�z�jli, where h�z
i0�z�jli �

hz
i0z�jli � hz


i0ihz

�
jli. We denote h�z
i0�z�jli as gijl � g
�ij ð�xe

ijlÞ.
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Using this correlation function and symmetry operator R in

the point group, (5) can be rewritten as

I
��
1 ðqÞ ¼ 	

P
ijl

vijlaijl

P

�R

Rf
�Rf ���

� g
�ijl expð2�iq � R�xe
ijlÞ; ð6Þ

where Rf
� � f ðS
i ðRÞÞ
�z, i and j run over the independent

OD pairs for the magnetic atoms in the unit cell which are

located at xi0 and xjl in n-dimensional space, and R runs over

all the symmetry operators in the point group. aijl � aijð�xijlÞ

is the multiplicity of a vector �xijl, ðS


i ðRÞÞ

��
� ðS
i RÞ

��

(Yamamoto, 2010). (Note that the matrix representation of the

rotation operator R for the spin is different from that for the

atom position by the determinant of the latter.) Therefore,

from (4), the scattering cross section is given by

d�

d�
¼ �	

X
ijl

vijlaijl

X

�R

ðRf
 � Rf��Þ � ðeq � Rf
Þðeq � Rf��Þ
� �

� g
�ijl expð2�iq � R�xe
ijlÞ; ð7Þ

where Rf
 is the magnetic structure factor of the magnetic

atom with a 
 orientation, which is rotated by R.

The correlation functions fulfill g

ijl ¼ �
P


 6¼� g
�ijl (Haya-

kawa & Cohen, 1975). This leads to the final form of the SRO

diffuse scattering cross section,

d�

d�
¼ � �	

X
ijl

vijlaijl

�
X

>�R

j�Rf
�j2 � jeq ��Rf
�j2
� �

� g
�ijl expð2�iq � R�xe
ijlÞ; ð8Þ

where �Rf
� ¼ Rf
 � Rf� (see Appendix B).

3. Diffuse scattering from magnetic atom clusters

We consider the case where the correlation between the spins

of atoms in a cluster is complete and atoms are not shared

between different clusters. In such a case, I
��
1 ðqÞ can be

expressed by the magnetic structure factor of the magnetic

atom cluster as shown below. In (6) the summation with

respect to i, j, l and R can be replaced by the summation

between all atomic pairs in a cluster and summation over

the cluster centers. Therefore, (6) can be calculated by intro-

ducing the vector from the cluster center, �xe
ikl ¼

�xe
in þ�xe

jn0 þ�xe
nn0l, where the vectors �xe

in and �xe
jn0 are

the magnetic atom positions measured from the n and n0

cluster centers xn and xn0 in the unit cell, while

�xnn0l � xn � xn0 � xl. We denote the kind of cluster and their

orientations by a single letter 
. Then the correlation function

of each atomic pair g
�ijl is given by the correlation function of

the cluster center g
�nn0 l, provided that atoms located at xi0 and

xjl belong to the n and n0th clusters.

In terms of the correlation functions for the cluster centers,

(7) is rewritten as (see Appendix C)

d�

d�
¼ �	

X
nn0 l

vnn0 lann0l

�
X

�R

ðRF
 � RF��Þ � ðeq � RF
Þðeq � RF��Þ
� �

� g
�nn0 l expð2�iq � R�xe
nn0lÞ: ð9Þ

where n, n0 and l run over the independent OD pairs for the

magnetic cluster centers located at xn and xn0 in the unit cell

and the lattice vector xl. ann0 l � ann0 ð�xi
nn0 lÞ is the multiplicity

of the nth and n0th cluster pair, vnn0l � vnn0 ð�xi
nn0lÞ is the

overlapped area of the cluster center ODs located at xn0 and

xn0l, and RF
 is the structure factor for the cluster with 
th

orientation rotated by R, the � component of which is given by

ðRF
Þ� ¼
P

i

f ðS
ðRÞÞ
�z expð2�iq � R�xe

inÞ; ð10Þ

where i runs over all the atoms in a cluster.

In the derivation of this expression, we used the fact that the

overlapped area vijl is the same as vnn0l since each magnetic

atom is assumed to be not shared by two clusters.

Similar to g
�ijl , the correlation functions g
�nn0 l fulfill

g

nn0 l ¼ �
P


6¼� g
�nn0 l. Therefore, (9) is rewritten as

d�

d�
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X
nn0 l

vnn0 lann0 l

�
X

>�R

j�RF
�j2 � jeq ��RF
�j2
� �

� g
�nn0 l expð2�iq � R�xe
nn0 Þ; ð11Þ

where �RF
� ¼ RF
 � RF�. This shows that when the

correlation between constituent atoms in all the clusters is

complete, the diffuse scattering intensity is given by the

correlation function of the cluster centers and the magnetic

structure factors of the clusters. This expression is simplified

when the inter-cluster correlations are negligibly small, as

shown in the next section.

4. Magnetic clusters without inter-cluster correlations

In the case where the correlations between clusters are

negligibly small, the diffuse scattering intensity calculation is

reduced to the calculation of the structure factor of the

magnetic atom cluster. In such a case, only the correlation

functions with �xe
nn0 l ¼ 0, that is n ¼ n0 and xl ¼ 0, are non-

zero so that the magnetic scattering intensity is given by

d�

d�
¼ �	

X
n

vnnð0Þ

� hj�F
j2i � hjeq ��F
j2i
� �

; ð12Þ

where �F
 � F
 � hFi (see Appendix D). Note that hX
i �P

 X
hz
n i denotes the average over all the orientations of

X
. It is remarkable that (12) is independent of the location of

the cluster center, so that it is determined by the structure

factor of magnetic clusters and the number of cluster centers.

[Note that 	vnnð0Þ gives the number of nth cluster centers.]

Since quasicrystals can be considered to consist of some kind

of cluster (usually with high symmetry), if magnetic atoms are
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located at some shell of the cluster, this simple formula may be

applicable to the magnetic diffuse scattering in such cases.

5. Magnetic diffuse scattering due to phason flips of the
Penrose patterns

The magnetic scattering intensity of a given spin arrangement

in external space can be directly calculated from the magnetic

structure factor of a given magnetic moment distribution by

calculating the Fourier transformation of its magnetic moment

and by taking an ensemble average [see (3) and (4)]. In

numerical calculations of the diffuse scattering intensity,

however, we need to use the deviation of the spin magnetic

moment from its average value in order to remove the

contributions of Bragg reflections, as mentioned in Yamamoto

(2010). In this section, numerical results for several spin

arrangements are compared with their analytical results to

confirm the validity of the derived expression. For simplicity

the jqj dependence of the magnetic form factor f �ðqÞ is

neglected.

We employ a simple magnetic atom arrangement, where the

magnetic atom is located at the vertices with three outgoing

edges in the PP and their phason flip sites are generated by the

ODs 5 and 6 in Fig. 1 (since the phason flip sites are generated

only by ODs 5 and 6 and sites generated by ODs 3 and 5 are

included in the PP). For convenience, an OD which is related

to OD i by inversion is denoted as OD i0. As is well known, the

PP is given by four pentagonal ODs. They are composed of

ODs 1 and 3, and 2 and 4 shown in Fig. 1, and another two

given by ODs 10–40 (see Yamamoto, 2010). The symmetry of

the PP is specified by a four-dimensional space group. We

represent it by a layer-group symbol p10=mmmð1071mmÞ

(Kopský & Litvin, 2006) instead of using a five-dimensional

space-group symbol for real decagonal quasicrystals (Janssen

et al., 2002).

The phason flip sites are located in two kinds of hexagons in

the framework (which are generated by ODs 1, 2, 10 and 20; see

Fig. 2). Blue points are the vertices of the PP generated by

ODs 3, 4, 30 and 40. Their phason flip sites in the same hexagon

are generated by ODs 50 60, 5 and 6, respectively. Their spin

direction depends on the magnetic layer group used. In order

to introduce disorder in the structure, we assume that one of

these two sites in the hexagon is randomly occupied, while the

spin orientation is fixed for each site. Depending on the spin

orientation used for each site, a different diffuse scattering

intensity is obtained as shown below. Since we assume that the

sites generated by ODs 1, 2, 10 and 20 are fully occupied by the

same magnetic atoms and its spin magnetic moment is

completely ordered, any spin arrangement for such sites

contributes only to the Bragg intensity so that these spins are

ignored in the following.

We consider six models with different spin arrangements,

which can be classified by magnetic layer groups. To specify

the spin direction of atoms which are generated by ODs 3–6,

we use a six-coordinate representation of a five-dimensional

vector for convenience, although one of the six basis vectors

shown below is redundant. Five-dimensional vectors are

represented by coordinates with respect to the basis vectors ej

ðj 
 6Þ with

ej ¼
2a

51=2
½cja1 þ sja2 þ c2ja4 þ s2ja5� ð j 
 5Þ ð13Þ

e6 ¼ a3; ð14Þ

where cj ¼ cosð2�j=5Þ and sj ¼ sinð2�j=5Þ, and a1, a2 and a3

are the unit vectors of the external space, while a4 and a5 are

those of the internal space. We write a five-dimensional vector

s in terms of coordinates with respect to the basis vectors ej:
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Figure 1
Independent occupation domains for the Penrose pattern and its phason
flip sites, located at (a) ð1; 1; 1; 1Þ=5 and (b) ð2; 2; 2; 2Þ=5 in the unit cell of
a four-dimensional decagonal lattice (Yamamoto, 1996, 2010). The
occupation domains 3, 4, 5 and 6 and their inverted ODs located at (a)
�ð1; 1; 1; 1Þ=5 and (b)�ð2; 2; 2; 2Þ=5 generate the positions flipped by the
random phason into each other.

Figure 2
Phason flip sites in the Penrose pattern. The atom positions flipped by the
random phason into each other are shown in hexagons.



ðs1; s2; s3; s4; s5; s6Þ ¼
P6

j¼1 sjej (Yamamoto, 1996). Note that

ð1; 1; 1; 1; 1; 0Þ equals the zero vector, because
P5

j¼1 ej ¼ 0.

The spin arrangements of the six models are shown in Table

1. In the first two models all the spins are in the plane normal

to the tenfold axis. (The tenfold axis is parallel to e6.) Their

(average-structure) symmetries are however different. In

model (I) there is the inversion fIj0g, while in model (II) the

antisymmetric inversion fIj0g0 exists in contrast. Note that the

latter flips the spin direction, while the former does not change

the spin direction. In model (I) the spin of an atom denoted by

a blue point in Fig. 2, which is generated by the ODs 3 and 30

(or 4 and 40), is directed to the center of the hexagon. Thus in

models (I) and (II) the spin direction of the phason flip sites

(denoted by red points) is parallel and antiparallel to that of

the original site. The spin arrangement in the two hexagons for

model (II) is shown in Fig. 3. As mentioned above, the

difference between a real magnetic moment and its average

contributes to the diffuse scattering intensity, so that the

difference of the magnetic moments for these sites is, in

contrast, antiparallel and parallel. Owing to the symmetry of

the PP, the spins on the site generated by equivalent ODs are

rotated by 2j�=5 when the ODs are obtained from indepen-

dent ODs by 4j�=5.

Models (III) and (IV) have the spin directions parallel and

antiparallel to the tenfold axis, respectively, for all the sites

generated by ODs 3, 4, 5 and 6. In the former the existence of

fIj0g is assumed, while in the latter, fIj0g0 instead. Thus, the

spins in the hexagon are parallel and antiparallel in models

(III) and (IV), and again their difference from the average

spins are antiparallel and parallel.

The layer group allowing such a spin configuration is

different in different models. In all the models, the (positional)

site symmetry of ODs 3 (5) and 4 (6) is 2mmðmm1Þ. Note that

the normal mirror m and antisymmetric mirror m0 allow the

spins which are normal and parallel to the mirror plane,

respectively. Thus, in models (I) and (II) the site symmetry of

the spin arrangement in ODs 3–6 should be m02m0ðm0m1Þ,

while in models (III) and (IV), it is m020mðm0m01Þ. As

mentioned above, in models (I) and (III) the inversion

symmetry is assumed, while in models (II) and (IV) anti-

symmetric inversion is required. Therefore, models (I) and

(II) have the layer groups p100=m0m0mð1071mmÞ and

p10=m0m0m0ð1071mmÞ, while those of models (III) and (IV)

are p10=mm0m0ð1071mmÞ and p10=mm0mð1071mmÞ. (The

time-reversal operation inverts the spin direction and it is

defined in the external space, so that the prime denoting the

time-reversal operation combined with another operation is

used only in the external space parts.)

If we regard the atoms in the hexagons in Fig. 2 as a cluster,

we have two kinds of clusters which are accommodated in the

two hexagons. Then the diffuse scattering intensity can be

calculated by (12), since all the models have no correlation

between these clusters. As mentioned in Yamamoto (2010), v44

is 
2 times larger than v33. Noting that

�F
 ¼
s

js
j
½1� expð2�q ��x
Þ� ð
 ¼ 1; 2Þ; ð15Þ

with �x1 ¼ ð1; 1; 0; 1Þ and �x2 ¼ ð�1; 1;�1; 0Þ, give the

fluctuation in magnetic moment in models (I)/(II) and (III)/

(VI) for the upper/lower sign, their diffuse scattering inten-

sities shown in Fig. 4 are obtained for models (I) and (II). On

the other hand, in models (III) and (IV) s1=js1j and s2=js2j are

both replaced by s3=js3j in Table 1. This leads to Fig. 5. It

should be noted that Fig. 4 is quite different from Fig. 5 since

the magnetic structure factor depends strongly on the spin

direction because of the existence of the second term in the

square brackets in (12). In models (III) and (IV) the second

term vanishes since the scattering vector q is normal to s3.

Thus, the intensity of Fig. 5 only comes from the first term,

which is independent of the spin direction. From (12) and (15),

the diffuse scattering intensity can be expressed as the sum of

a constant term (the so-called Laue monotonic diffuse scat-

tering) and the deviations from it. The second term in (15)

gives the same amplitude for models (I) and (II) for the same

q, while its sign is negative and positive, respectively. Such

inverted intensity modulations are clearly seen in Figs. 4(a)

and (b) or Figs. 5(a) and (b).

research papers

388 Akiji Yamamoto 	 Magnetic short-range order diffuse scattering Acta Cryst. (2010). A66, 384–393

Figure 3
Spin arrangements in the phason flip sites in two hexagons (a) and (b) of
the Penrose pattern. The arrows show the spin orientation in model (II)
(drawn by VESTA; Momma & Izumi, 2008) when the sites are occupied.
In model (IV) the arrows are replaced by the up and down arrows normal
to the plane of the hexagon.

Table 1
Spin orientations for models (I) to (VI).

The models are defined by the unit vectors se
j =js

e
j j ð j ¼ 1; 2; 3Þ. The vectors se

j

are the external space components of vectors expressed by a six-coordinate
representation of a five-dimensional vector with respect to the basis ej ð j 
 6Þ,
for example s1 = ð0; 0; 0; 0; 1; 0Þ, s2 = ð0; 1; 0; 0; 1; 0Þ, s3 = ð0; 0; 0; 0; 0; 1Þ. Note
that the sixth coordinate represents the component parallel to the tenfold axis,
so that spins in models (I) and (II) are on the plane normal to the tenfold axis
and those in models (III)–(VI) are parallel or antiparallel to the tenfold axis.

Model

OD (I) (II) (III) (IV) (V) (VI)

3 s1 s1 s3 s3 s3 s3

50 s1 �s1 s3 �s3 s3 �s3

4 s2 s2 s3 s3 s3 s3

60 s2 �s2 s3 �s3 s3 �s3

30 s1 �s1 s3 �s3 �s3 s3

5 s1 s1 s3 s3 �s3 �s3

40 s2 �s2 s3 �s3 �s3 s3

6 s2 s2 s3 s3 �s3 �s3



The numerical calculations of the diffuse scattering inten-

sity are given in Fig. 6. The numerical calculations of one

ensemble showed strong speckle noise, so that the figure is

obtained after averaging intensities of 1000 ensembles.

Although Fig. 6 still includes weak speckle noise, it is evident

that the numerical calculations for these models give diffuse

scattering intensities quite similar to the corresponding

analytical ones, suggesting the validity of the analytical

formula.

In Table 1, two other models, (V) and (VI), are given, in

which the spins of ODs 3, 4, 50 and 60 are the same as in (III)

and (IV), respectively, while those of ODs 30, 40, 5 and 6 are

flipped. The magnetic structure factors of the clusters in

models (V) and (VI), which are formed by the sites generated

by ODs 30 and 5 or 40 and 6, change signs compared with those

of the corresponding clusters in models (III) and (IV).

Therefore, their Bragg reflection intensities are different.

However, model (V) gives the same diffuse scattering inten-

sity as that of model (III) and also model (VI) leads to the

same pattern as in model (IV). This is because if the sign of the

cluster structure factor is changed, the diffuse scattering

intensity does not change whenever the inter-cluster correla-
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Figure 5
Diffuse scattering intensity of (a) model (III) and (b) model (IV). The
scale interval is 5a� as in Fig. 4.

Figure 4
Diffuse scattering intensity of (a) model (I) and (b) model (II). The
intensity is expressed by the rainbow colors shown in (c). The interval of
the scale is 5a� [a� ¼ 2=ð51=2arÞ, where ar is the edge length of the Penrose
pattern shown in Fig. 2].



tion is zero, as is clear from (12). Similarly, we can consider a

model with different Bragg intensities but with the same

diffuse scattering intensity for the case where the spin is on the

plane normal to the tenfold axis.

6. Discussion

We consider in more detail the special case where all magnetic

atoms are included in clusters and the correlation between the

clusters is negligibly small. We compare (12) with the magnetic

Bragg reflection intensity formula, which is given by (see

Appendix E)

IðqÞ ¼ �	 Fðq0Þ
�� ��2� eq � Fðq

0
Þ

�� ��2h i
; ð16Þ

with the magnetic structure factor

Fðq0Þ ¼
P

n

an

P

fRj
g

hz
n iF

ðqÞDnðq

iÞ

� exp½2�iq0 � ðRxn þ 
Þ�; ð17Þ

where q0 is a reciprocal-lattice vector of an n-dimensional

lattice, the external and internal space components of which

are q and qi, an is the multiplicity of the nth cluster center,

fRj
g runs over the symmetry operations of an n-dimensional

space group, while Dnðq
iÞ is the Fourier integral of the OD for

the cluster center which is located at xn in an n-dimensional

unit cell (Yamamoto, 1996).

In both cases the intensity can be calculated by the structure

factor of the magnetic atom clusters. An important difference

is that (16) gives an integrated intensity in contrast to the

scattering cross section in (12). Therefore, the peak height

obtained from experiments does not correspond to (16) and it
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Figure 6
Diffuse scattering intensities calculated by numerical calculations for models (I)–(IV) in (a)–(d). The scale interval is 5a� as in Fig. 4.



largely depends on the resolution of the equipment used even

if the same sample is measured. The scattering vector q in (12)

is not always a reciprocal-lattice vector, although the expres-

sion can give the diffuse scattering intensity at the positions of

Bragg reflections. In an experiment, the measured intensity is

always an integrated intensity within a small solid angle, which

is determined by the slit width or pixel size of the detector.

Note that the same scale factor applies to the integrated

intensity in the solid angle which covers a peak in the Bragg

reflection position. Therefore, if we know the scale factor �	
from the Bragg reflection intensity, we can calculate the

diffuse scattering intensity with the same scale.

The intensity formula for magnetic neutron diffuse scat-

tering is similar in form to the corresponding formula for

diffuse X-ray scattering. The main difference exists in the

structure factors. In neutron magnetic scattering, an electron

spin in a material scatters a neutron so that a scattering factor

is given by a vector, while an X-ray is scattered owing to the

charge of an electron and leads to a scalar structure factor.

Owing to the vector properties, the scattering cross section of

the neutron scattering depends on the direction of the scat-

tering vector q. In special cases, both X-ray and neutron

scattering have a similar intensity distribution. In fact, it can

be shown that the intensity distribution in Fig. 5 agrees with

that of the X-ray diffuse scattering intensity shown in Figs.

4(a) and 5(a) in Yamamoto (2010). In this case j�F
j agrees

with j�f
j used in Yamamoto (2010) since no jqj dependences

are assumed for the atomic structure factor and magnetic form

factor.

The derived formulae, equations (7) or (9), are applicable to

any case with inter-magnetic atom or inter-magnetic cluster

correlations. However, when long-range correlations between

them exist, we need to take into account the difference in

atom or cluster environments up to far neighbors in the

modeling of quasicrystals, since each small OD has to generate

atoms or clusters with a similar environment within such a

long distance. If we consider an environment up to a long

distance, the number of different environments will increase

compared with that of the nearest neighbor. This increases the

number of independent ODs to be considered. Except for

such a practical difficulty, the formulae are applicable to any

cases in principle.

In icosahedral Zn–Mg–Ho (i-Zn–Mg–Ho) quasicrystals, a

magnetic cluster model without inter-cluster interaction seems

to be a good approximation. Then a simpler expression, such

as (12), can be applied. The analysis of this case is, however,

beyond the scope of this paper. Detailed analysis of the diffuse

scattering in i-Zn–Mg–Ho (Sato et al., 2000) will be described

in a separate paper.

7. Summary

An analytical intensity formula for the SRO magnetic neutron

diffuse scattering has been derived and it has been applied to

the diffuse scattering of randomly distributed electron spins

on the phason flip sites of the PP. The SRO magnetic diffuse

scattering intensity in quasicrystals can be expressed by the

overlapped volume of ODs in the higher-dimensional

expression of quasicrystals and pair-correlation functions. To

validate the derived formula, analytical results in the four

examples with different spin orientations in the PP are

compared with the results of numerical calculations. Agree-

ment between analytical and numerical results confirms the

validity of the formula. The SRO magnetic diffuse scattering

intensity in quasicrystals strongly depends on the spin direc-

tion. This is demonstrated in the same examples.

APPENDIX A
Correlation function of magnetic moments

The Fourier integral in equation (3) can be calculated by using

a higher-dimensional (n-dimensional) description of quasi-

crystals. Each atom position in the three-dimensional external

space is given as an intersection of an OD, so that the magnetic

moment density in the external space is given by

M�ðxeÞ ¼
P

l

P
i

M�
i ðx

e � xe
ilÞDið�xi

ilÞ; ð18Þ

where M�
i ðx

eÞ is the magnetic moment density of the ith atom

located at the origin, while xe
il and xi

il are the external and

internal space components of the positional vector of the

center of the ith OD in the lth unit cell of an n-dimensional

lattice, xi þ xl. The function Diðx
iÞ is the occupation prob-

ability and takes a value of one when xi is within the ith OD

located at the origin, otherwise it is zero. The sum over l runs

over all the lattice points in the n-dimensional lattice and i

runs over all the ODs in the unit cell. Owing to the existence of

Dið�xi
ilÞ in the above expression, only ODs near the three-

dimensional external hyperplane give the atom position (see

Fig. 1 in Yamamoto, 2010) Using this expression, (3) is

rewritten as

hM�ðqÞM�ð�qÞi � I��ðqÞ

¼
R
V

dxe
R
V

dx0e
P
lm

P
ij

exp½2�iq � ðxe � xe0Þ�

� hM�
i ðx

e
� xe

ilÞM
�
i ðx
0e
� xe

jmÞi

�Dið�xi
ilÞDjð�xi

jmÞ

¼
P
lm

P
ij

ff h��il�
�
jmiDið�xi

ilÞDjð�xi
jmÞ

� expð2�iq ��xe
iljmÞ ð19Þ

where f ¼ f ðqÞ is the magnetic form factor of atoms which

occupy the ith OD in the lth unit cell of the n-dimensional

lattice, while ��il is the � component of the unit spin vector for

that atom. This expression includes the Bragg reflection

intensity in addition to the diffuse scattering intensity. The

former and the latter come from the first and second terms of

h��il�
�
jmi ¼ h�

�
i ih�

�
j i þ h��

�
il ��

�
jmi, where ���il ¼ ��il � h�

�
i i.

(We assume that h��i i is independent of l). Therefore, I
��
1 ðqÞ �

h�M�ðqÞM�ð�qÞi is given by

Acta Cryst. (2010). A66, 384–393 Akiji Yamamoto 	 Magnetic short-range order diffuse scattering 391

research papers



P
lm

P
ij

ff h���il ��
�
jmiDið�xi

jmÞDjð�xi
ilÞ expð2�iq ��xe

iljmÞ

¼ 	
P
ijl

fifjh��
�
i0��

�
jl ivijl expð2�iq ��xe

ijlÞ: ð20Þ

where vijl � vijð�xi
ijlÞ is the overlapped area (volume) of the ith

and jth ODs located at xi and xjl, respectively. Thus, we obtain

equation (5).

APPENDIX B
Another expression for diffuse scattering intensity

In equation (7) we consider the parts

P

�

ðRf
 � Rf��Þg
�ijl ð21Þ

and

P

�

ðeq � Rf
Þðeq � Rf��Þg
�ijl ð22Þ

separately. Since g

ijl ¼ �
P

�6¼
 g
�ijl (Hayakawa & Cohen,

1975), equation (21) is rewritten as

P

hi�

Rf
 � ðRf�� � Rf�
Þg
�ijl

¼ �
P

>�

ð�Rf
� ��Rf�
�Þg
�ijl ; ð23Þ

where
P


hi� is the summation with respect to 
 and �
excluding 
 ¼ � and �Rf
� � Rf
 � Rf�. From similar

considerations, equation (22) is rewritten as

�
P

>�

ðeq ��Rf
�Þðeq ��Rf�
�Þg
�ijl : ð24Þ

Using (23) and (24), (7) is rewritten as (8).

APPENDIX C
Diffuse scattering from magnetic clusters

By replacing h��
�i0 ����jl i with ðS
Þ�z
ðS�Þ

�z
h�z
i0�z�jli, equa-

tion (5) is rewritten as

I
��
1 ðqÞ ¼ 	

P
ijl

vijl

P
R

ff �ðS
Þ
�z
ðRÞðS�Þ

�z
ðRÞ

� h�zi0�zjli expð2�iq ��xe
ijlÞ; ð25Þ

where ðS
Þ��ðRÞ � ðS
R0Þ
��. The matrix element of the rota-

tion operator for the spin is different from that of the posi-

tional vector, since the former is an axial vector while the

latter is a polar vector. To avoid the confusion, R0 is used here

for the rotation matrix for the spin.

As stated in the main text, the correlation functions of each

atomic pair within a cluster, h�z
i0�z�jli, are equal to the

correlation function of the cluster, h�z
n0�z�n0 li, and the

magnetic structure factor of a cluster is given by equation (10).

This leads to equation (9).

APPENDIX D
Diffuse scattering for clusters without inter-cluster
correlations

In the case where the correlations between clusters are zero,

we have hz
n0z�n0 li ¼ hz


n i�nn0�0l�
�, where hz
n i is the

probability with which the cluster at the nth site takes the 
th

orientation. Then the non-zero correlation function is

given by g
�nn ð0Þ ¼ h�z
n �z�ni ¼ hz


n ið�
� � hz

�
niÞ. In equation

(11) we consider the parts �
P


>� j�F
�j2g
�nn ð0Þ and

�
P


>� jeq ��F
�j2g
�nn ð0Þ separately. The first part is given byX

>�

jF
 � F�j2hz
n ihz
�
ni

¼
1

2

X

;�

jF
 � F�j2hz
n ihz
�
ni

¼
1

2

X

;�

jF
j2 � 2ReðF
F��Þ þ jF�j2
� �

� hz
n ihz
�
ni

¼
X



jF
j2 � jhFij2
� �

hz
n i; ð26Þ

where hFi ¼
P


 F
hz
n i. (Note that hFi does not depend on 
,

so that
P


hFihz


n i ¼ hFi since

P

hz



n i ¼ 1.) This is equal to

the average of the squared deviation of the structure factor of

the 
th orientation from the average structure factor,P



jF
 � hFij2hz
n i � hj�F
j2i; ð27Þ

where �F
 ¼ F
 � hFi, since this givesP



jF
j2 � 2ReF
hF�i þ jhFij2
� �

hz
n i: ð28Þ

Noting that Re
P


 F
hz
n ihF
�i ¼ jhFij2, this leads to the last

expression of (26).

The second part is obtained from (26) by replacing F
 and

F� with eq � F

 and eq � F

�, so that it is given by

hjeq � F

 � heq � Fij

2
i ¼ hjeq ��F
j2i: ð29Þ

Expressions (26) and (29) for the first and second parts in (11)

lead to (12).

APPENDIX E
Bragg reflection intensity

The Bragg intensity is obtained from (4) by replacing I��ðqÞ ¼

hM�ðqÞM�ð�qÞi with I
��
0 ðqÞ ¼ hM

�ðqÞihM�ð�qÞi. From (18)

the term contributing to the Bragg reflection intensity,

hM�ðqÞi, is given by

hM�
ðqÞi ¼

P
li

f hz�i iDið�xi
ilÞ expð2�iq � xe

ilÞ: ð30Þ

Using Diðx
i
ilÞ ¼

R
dqi Diðq

iÞ expð�2�iqi � xi
ilÞ [or Diðq

iÞ ¼

ð2�Þ�d=2
R

dxi Diðx
iÞ expð2�iqi � xi

ilÞ ðd ¼ n� 3Þ], this is

rewritten as

hM�
ðqÞi ¼

R
dqi Lðq0ÞF�ðq0Þ; ð31Þ
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where Lðq0Þ ¼
P

l expð2�iq0 � xlÞ is the periodic delta function

(the Laue function) in n-dimensional space and F�ðq0Þ is the �
component of the magnetic structure factor. This is given by

F�
ðq0Þ ¼

P
i

f hz�i iDiðq
iÞ expð2�iq0 � xiÞ; ð32Þ

with the n-dimensional vectors q0 ¼ qþ qi and xi ¼ xe
i þ xi

i . In

this expression i runs over all the ODs of the magnetic atoms

in the n-dimensional unit cell. Using (31), (32) and (4) the

integrated intensity of the Bragg reflection at the reciprocal-

lattice point q is given by

IðqÞ ¼ �	 Fðq0Þ
�� ��2� eq � Fðq

0Þ
�� ��2h i

: ð33Þ

Equations (32) and (33) mean that the Bragg reflection

intensity can be obtained by projection of the structure factor

in n-dimensional space onto the external space. The summa-

tion over i in (32) can be replaced by the summation over the

cluster centers and a summation for the ODs of the consti-

tuent atoms (cluster ODs). As stated in the text, the ODs for

constituent atoms of a cluster (cluster ODs) are the same as

that of the cluster center but they are shifted by �xe
in from the

OD of the cluster center in parallel to the external space. Then

xi is given by �xe
in þ xn, where �xe

in is a vector from the cluster

center and xn is the positional vector of the nth cluster center.

Let the � component of the structure factor for the cluster

ODs of the nth cluster be F�ðqÞ. Then (32) is rewritten as

F�ðq0Þ ¼
P

n

F�ðqÞDnðq
iÞ expð2�iq0 � xnÞ ð34Þ

with the structure factor of the cluster

F�ðqÞ ¼
P

i

f hz�i i expð2�iq ��xe
inÞ; ð35Þ

where i runs over the atoms forming the nth cluster and Dnðq
iÞ

is the Fourier integral of the OD for the nth cluster center.

Instead of considering all the clusters, the use of independent

ones and symmetry operations and (34) and (35) lead to (16)

and (17).

The author thanks T. J. Sato for valuable discussions.
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